<tt id="0yygg"><code id="0yygg"></code></tt>
<optgroup id="0yygg"></optgroup>
<center id="0yygg"></center>
      我的主页      中南大学      能源科学与工程学院      
登录   |   English
冷立健
个人简介
姓名:冷立健

系所:新能源科学与工程系

职称:教授

邮箱:l.leng2019@csu.edu.cn


男,1987年生,博士,特聘教授,2017年湖南大学工学博士毕业,博士期间曾在英国University College London联合培养;2017年10月被南昌大学聘为高层次人才(学科方向带头人)、特聘教授;2019年12月入职中南大学,被破格聘用为特聘教授。

长期从事生物质多联产、生物质能源及相关环境问题的研究,主持国家自然科学基金青年基金项目1项、江西省重大科技专项子课题1项、江西省自然科学基金青年基金项目1项、中南大学特聘教授启动经费项目1项;发表SCI学术论文80余篇,其中,以第一作者或通讯作者发表SCI论文30余篇(其中90%为JCR一区),ESI 1%论文4篇,ESI 0.1%论文2篇,Google citation 3000余次,H指数31;获授权国家发明专利10余项;指导本科生创新项目4项,其中国家级1项;曾指导学生获得节能减排社会实践与科技竞赛国赛三等奖(2018)、挑战杯省二等奖等国家级、省级或校级获奖10余项。是Energy、Fuel、Fuel Processing technology、Applied Energy、Science of the Total Environment和Bioresource Technology等能源环境领域数十个SCI期刊的特邀审稿人。曾获湖南省优秀毕业生、湖南大学优秀博士学位论文、研究生国家奖学金、高廷耀环?萍挤⒄够鸹崆嗄瓴┦可艹鋈瞬沤毖Ы、湖南大学长江环境奖学金、湖南大学博士研究生校长奖学金(连续3年)、南昌大学优秀班导师等荣誉或奖学金。


教育经历
2013.09-2017.06:湖南大学,博士

2016.04-2017.04:University College London (UCL) ,博士联合培养

2010.09-2012.12:湖南大学,硕士

2006.09-2010.06:长沙理工大学,本科

工作经历
2019.12-至今:中南大学,能源科学与工程学院,特聘教授

2017.10-2019.12:南昌大学,资源环境与化工学院,特聘教授(学科方向带头人)

科研方向
研究方向:

生物质/有机废物热化学能源化转化(水热液化/碳化、(微波)热解等);

热化学能源化利用相关环境问题研究(如重金属、氮、磷、硫的迁移转化、排放等);

生物炭应用(储碳与CO2固定等);

生物油(微乳)提质加工与发动机应用。


主持项目:

中南大学启动经费,生物质多联产研究,经费120万元,2020-2024;

国家自然科学基金青年基金,微藻生物质能-水热水相资源化研究,经费25万元,2019-2021;

江西省重大科技专项(子课题),畜禽粪污厌氧发酵-沼液资源化研究,经费50万元,2019-2021;

江西省自然科学基金青年基金项目,微藻生物质能-水热过程中氮迁移转化研究,经费6万元,2019-2020;

南昌大学启动经费,生物质多联产研究,经费200万元,2017-2019。


学术成果

第一作者或通讯作者论文:

2020年

1.通讯 Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: A review. Algal Research 2020.47, 101819

2.一作 Nitrogen containing functional groups of biochar: an overview. Bioresource Technology 2020. 298, 122286.
3.通讯 Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: A comparison study. Bioresource Technology 2020. 298, 122502.
4.一作 Use of microalgae-based technology for the removal of antibiotics from wastewater: A review. Chemosphere 2020. 238, 124680.

2019年
1.一作 Surfactant assisted upgrading fuel properties of waste cooking oil biodiesel. Journal of Cleaner Production 2019. 210, 1376-1384.
2.一作 Meat & bone meal (MBM) incineration ash for phosphate removal from wastewater and afterward phosphorus recovery. Journal of Cleaner Production 2019. 238, 117960.
3.一作 Biochar stability assessment by incubations and modelling: methods, drawbacks and recommendations. Science of the Total Environment 2019. 664, 11–23
4.一作 Biochar stability assessment methods: A review. Science of the Total Environment 2019. 647, 210-222.
5.一作 Characterisation of ashes from UK waste biomass power plant and phosphorus recovery. Science of the Total Environment 2019. 690, 573–583.
6.通讯 Screening mi crowave susceptors for microwave-assisted pyrolysis of lignin: Comparison of product yield and chemical profile. Journal of Analytical and Applied Pyrolysis 2019, 142, 104623.
7.一作 Biosurfactant rhamnolipid assisted microemulsification of bio-oil components in diesel. Energy Sources 2019. 41:829–43.
8.一作 Determination of the activation energies of biodieselmicroemulsion and biodiesel blends. Energy Sources 2019. 1-10.

2018年
1.一作 Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresource Technology. 2018. 256. 529-542.
2.一作 Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresource Technology. 2018. 251: 49–56.
3.一作 Bio-oil upgrading by emulsification/microemulsification: A review. Energy 2018. 161, 214-232.
4.一作 The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass. Bioresource Technology. 2018. 259. 156-163.
5.一作 et al., Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges. Energy 2018. 153, 1061–1072.
6.共同一作 A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresource Technology. 2018. 259. 181-190.
7.一作 An overview of the effect of pyrolysis process parameters on biochar stability Bioresource Technology 2018. 270, 627-642.
8.一作 2018. Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from hydrothermal treatment of wet biomass: A review. Energy Sources 2018. 2648–2659.


2016年
1.一作 Pyrolysis and combustion kinetics of glycerol-in-diesel hybrid fuel using thermogravimetric analysis. Fuel 2016. 182, 502–508. IF 2018 =5.128
2.一作 Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresource Technology, 2016. 200: 320-327.

2015年
1.一作 The comparison of oxidative thermokinetics between emulsion and microemulsion diesel fuel. Energy conversion and management. 2015. 101: 364–370.
2.一作 Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion. Energy. 2015. 82: 218–228.
3.一作 Surface characteristics of rice husk derived bio-char and cationic dye (Malachite green) adsorption. Fuel. 2015. 155: 77–85.
4.一作 Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Processing Technology. 2015. 129: 8-14.
5.一作 Rhamnolipid based glycerol-in-diesel microemulsion fuel: Formation and characterization. Fuel. 2015. 147: 76–81.
6.一作 Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Applied Surface Science. 2015. 346: 223–231.
7.一作 Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere. 2015. 120: 645–652.
8.一作 Distribution behavior and risk assessment of metals in bio-oils produced by liquefaction/pyrolysis of sewage sludge. Environmental Science Pollution Research International. 2015. 22:18945–55.

2014年
1.一作 The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresource Technology. 2014. 167: 144-150.


头头彩票首页